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SUMMARY

This paper describes development of an integrated shallow surface and saturated groundwater model
(GSHAW5). The surface �ow motion is described by the 2-D shallow water equations and ground-
water movement is described by the 2-D groundwater equations. The numerical solution of these
equations is based on the �nite volume method where the surface water �uxes are estimated using
the Roe shock-capturing scheme, and the groundwater �uxes are computed by application of Darcy’s
law. Use of a shock-capturing scheme ensures ability to simulate steady and unsteady, continuous and
discontinuous, subcritical and supercritical surface water �ow conditions. Ground and surface water
interaction is achieved by the introduction of source-sink terms into the continuity equations. Two
solutions are tightly coupled in a single code. The numerical solutions and coupling algorithms are
explained. The model has been applied to 1-D and 2-D test scenarios. The results have shown that
the model can produce very accurate results and can be used for simulation of situations involving
interaction between shallow surface and saturated groundwater �ows. Copyright ? 2005 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

In nature, surface water often interacts with groundwater and they exchange �ow. Such a �ow
interaction can often be observed between rivers and aquifers and in and around wetlands
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where overland �ows interact with aquifer �ows. These interactive �ow processes have been
experimentally and numerically studied for many years for several reasons such as groundwater
contamination analysis and wetland management.
These studies have led to the development of many integrated groundwater (GW) and

surface water (SW) numerical models. Two main characteristics help us to distinguish these
models: the type of equations and the solution methods used as well as the type of coupling.
Surface water �ow processes are generally described by two-dimensional (2-D) shallow water
equations or 1-D de Saint-Venant equations. Further simpli�ed equations such as di�usion
or kinematic wave equations are also employed for the overland �ow. Groundwater �ow is
modelled by solving either Richards equation (saturated, unsaturated and variable-saturated
�ow), or a rather simple equation, which is based on Darcy’s law and only suitable for
simulation of saturated �ow processes [1–3]. The degree of complexity also depends on the
spatial dimension used, i.e. (1-D, 2-D or 3-D models), and whether the �ow has a time
dimension (unsteady or not). One can also distinguish two types of coupling; external (loose)
coupling and internal (tight) coupling [4]. In external coupling, surface and groundwater
simulation is carried out one after another whereas in internally coupled models coupling is
provided within the same time level. The latter requires a single source written for both surface
and groundwater computations and this coupling is also rather more di�cult to implement
compared with external coupling.
GSHAW5 (Groundwater and SHAllow Water equations solved by FInite VolumE method)

is an integrated 2-D ground and surface water model, developed at Newcastle University.
Solution of the 2-D shallow water equations and 2-D groundwater equation is achieved by
the �nite volume method (FVM). The FVM is based on integration of the equations of in-
terest over each �nite volume (cell) covering the computational domain. The key element
in FVM is to estimate the �uxes at cell interfaces. In the surface water calculation, �uxes
through the cell interfaces are computed using the Roe scheme [5]. The solution to surface
water equations by the FVM and Roe scheme is suitable for many types of �ows including
continuous to discontinuous �ow, subcritical to supercritical and steady to unsteady �ow. It
is also capable of simulating drying and wetting processes. In the literature, examples can
be found where Roe scheme has been very successfully applied to severe �ow conditions
such as simulation of dam break and oblique shock problems [6, 7]. Many other similar
models are based on �nite di�erence schemes and have di�culty simulating supercritical
and transcritical �ows as well as phenomena of drying and wetting of the land to a rea-
sonable degree of accuracy [8]. To avoid these problems, the authors have opted for the
FVM with a shock-capturing scheme for the surface component of the model. Numerical so-
lution of the groundwater equation uses the same cells as the solution of the surface �ow
equations. However, in the groundwater solution �uxes through cell interfaces are calculated
according to Darcy’s law. Integration is achieved by the introduction of source-sink terms
in the continuity equations of both ground and surface water solutions. These source-sink
terms include leakage from surface to subsurface and a �ow from the subsurface to surface.
Additionally, in some cases, compatibility of groundwater head and surface water level is
maintained.
Solution of the 2-D groundwater equation is described in Section 2 and the solution to

2-D shallow water equations is given in Section 3. The coupling processes are explained in
Section 4. The features of the model are brie�y given in Section 5. Section 6 illustrates test
scenarios and the results. Finally, conclusions are drawn and outlined in Section 7.
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2. SOLUTION TO GROUNDWATER EQUATIONS

The 2-D groundwater �ow equation for homogeneous �uid with constant density can be
given [9, 10] as

Sy
@H
@t
=
@
@x

(
KxE

@H
@x

)
+
@
@y

(
KyE

@H
@y

)
(1)

where Sy is the speci�c yield, H is the groundwater head, Kx and Ky are the hydraulic
conductivity in x and y directions, respectively, and E is the thickness of fully saturated
groundwater inside the aquifer.
Equation (1) is known as the continuity (mass balance) equation for 2-D groundwater

�ow in porous media and is also known as the nonlinear Boussinesq equation [10]. The
groundwater equation can also be written as

Sy
@H
@t
=
@fx
@x
+
@fy
@y

=∇ · F

F=[fx; fy]
(2)

where ∇· is a divergence operator and fx and fy are the �uxes (speci�c discharges) in x and
y direction, respectively, and they can be denoted as

fx=KxE
@H
@x
; fy=KyE

@H
@y

(3)

In the FVM the domain is divided into disjunctive subdomains called cells (Figure 1) and the
solution is based on the integration of equations over these cells. Application of divergence
theorem to the �ux term and integration of Equation (2) over a control volume V results in∫

V

(
Sy
@H
@t

)
dV =

∫
V
(divF) dV =

∫
S
(F · n) dS=

∮
L
fx dy − fy dx (4)

 y 

x

nn

Figure 1. Typical �nite volume cell and outward normal vector, n.
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where n is an outward normal vector, S denotes the surface integral, and L represents the
line integral. This method is applicable to unstructured and non-uniform grids if the hydraulic
conductivity values are provided for all outward normal vector directions at every cell inter-
faces. Further in this paper, the detail of the solution will be presented for the rectangular
grid only. Hence, for a rectangular cell (Figure 2), the discrete form of the above relation
can be written as follows:

AcSy
@H
@t

= fx1(yB − yA)− fy1(xB − xA) + fx2(yC − yB)− fy2(xC − xB) + fx3(yD − yC)
−fy3(xD − xC) + fx4(yA − yD)− fy4(xA − xD)

where Ac is the area of the cell, xA; xB; xC; xD are x co-ordinate of points A, B, C, D,
respectively, similarly yA; yB; yC; yD are y co-ordinate of points A, B, C, D, respectively,
subscripts 1, 2, 3, 4 refer to the side of the cell as shown in Figure 2. Finally, Equation (2)
may be rewritten as

AcSy
@H
@t
=

k∑
j=1
fjLj (5)

where k is the number of sides of a cell.
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Figure 2. Cell interface groundwater �uxes and integration paths.
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2.1. Estimation of the �uxes by Darcy’s law

The key element in the FVM is the computation of the �uxes through cell interfaces. They
can be computed by Darcy’s law for each direction (Figure 2).
For instance, �ux through the interface (i + 1=2; j) can be given in discretized form as

f1 =Kx(i+1=2; j)
(Hi+1; j −Hi; j)
abs(Xi; j − Xi+1; j) E(i+1=2; j) (6)

where E(i+1=2; j) = (Hi; j + Hi+1; j=2) if groundwater head is under the ground level, H ¡Z .
E(i+1=2; j) = (Zi; j+Zi+1; j=2) if groundwater head is above the ground level, H ¿Z , where Z is
the vertical distance at the centre of the cell measured from datum to the ground surface (so
it is also the thickness of the aquifer); similarly, X is the x co-ordinate of the centre of the
cell. In the same way, remaining �uxes for the other interfaces can be computed.
Finally, the solution for H can be obtained from Equation (5) by Euler time integration

H up =Hn +
�t
AcSy

k∑
j=1
fjLj (7)

where n is the present time step, and H up is a solution for H over a time step �t.
However, solution of Equation (7) may not be the �nal solution for H as it will be explained

at the end of Section 4. Hence, the notation H up instead of Hn+1 is used (n + 1 stands for
the next time step).

3. SOLUTION TO SHALLOW WATER EQUATIONS

The 2-D form of the shallow water equations can be written as:
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@y
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(8)

where h is the water depth, vx, vy represent the depth-averaged velocity components in the x
and y directions, respectively, g is the acceleration due to gravity, Sox and Sfx are the bed
slope and friction terms, respectively, in the x direction and, similarly, Soy and Sfy are the
bed slope and friction terms, respectively, in the y direction.
Denoting p1 = h; p2 = hvx; p3 = hvy and de�ning the conserved physical vector

p=[p1; p2; p3]T, the conservative vector form of the shallow water equations can be written
in vector notation as

@p
@t
+
@f(p)
@x

+
@g(p)
@y

= b(p) (9)

where f(p); g(p) are the �ux vectors in the x, y directions, respectively, and b(p) denotes
source=sink terms.
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Equation (9) can also be written in the compact-conservative form given below by denoting
F(p)= [f(p); g(p)]T

@p
@t
+ (∇ · F)T = b(p) (10)

The FVM is based on integration of the equations of interest over each �nite volume (cell)
covering the computational domain. Thus,∫

V

(
@p
@t
+ (∇ · F)T

)
dV =

∫
V
b(p) dV (11)

where V represents the volume over which integration is performed.
Assuming that p varies with time but is constant over the cell, applying the divergence

theorem to the second term on the left-hand side of Equation (11), using the rotational
invariance property between f(p) and g(p) on each side of the cell and resolving F(p) in
the direction of the normal vector n, the 2-D equations are reduced to a number of 1-D
local Riemann problems [6] which are solved separately; one across each cell boundary. In
discretized form these are given by

Ac
dp
dt
=−

m∑
k=1
T−1(�k)f k(qk)Lk +

∫
V
b(p) dV (12)

where Ac is the area of the cell, m is the number of sides of the cell, k is an index that
represents the side of a cell, Lk is the length of the kth cell side, �k is the angle between
the outward normal vector n and the x-axis, T(�k) is the transformation matrix which can
be obtained by rotating the co-ordinate axes, T−1(�k) is the inverse transformation matrix, qk

is the transformed conserved physical vector obtained by multiplying p by the transformation
matrix and f k(qk) is the transformed numerical �ux vector. We have

q=−T(�)p=[h; hu; hv]T; f(q)= [hu; hu2 + gh2=2; huv]T

T(�)=

⎡
⎣1 0 0
0 cos � sin �
0 − sin � cos �

⎤
⎦ and T−1(�)=

⎡
⎣1 0 0
0 cos � − sin �
0 sin � cos �

⎤
⎦

where u, v are local components of velocity in the normal and tangential directions to the
cell boundary, respectively, given by

u= vx cos �+ vy sin �; v= − vx sin �+ vy cos �
If we let xn be a local co-ordinate, normal to the cell side, the Riemann problem can be
written as

@q
@t
+
@f(q)
@xn

= 0 (13)

The initial state is given by

q(xn; 0)=
{
qL; xn¡ 0
qR; xn¿ 0

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:763–783



INTEGRATED SHALLOW SURFACE–SATURATED GROUNDWATER FLOW 769

where qL and qR denote the values of the transformed conserved physical vector to the left
and right of the cell interface, respectively. The inside of the cell under consideration always
corresponds to the left-hand side of the Riemann interface, and the neighbouring cell to the
right-hand side.
Equation (13) is solved by the Roe scheme [5], giving the numerical �uxes through each

cell interface. The overall �nite volume solution to the shallow water equations and the
estimation of the numerical �uxes using the Roe scheme can be found in detail in many
references [6, 7, 11–16] and it will not be replicated in this paper to avoid repetition.
The upwinding technique [14, 17, 18] is applied to the treatment of the bottom slope in

order to achieve the accurate �ux balance. Following these references, �rst the source and
sink terms are separated as follows.
b= b1 + b2 where b1 denotes the source term (bottom slope) and b2 denotes sink term

(friction). Then, the source term is replaced by the discrete numerical source term as shown
below:

b̃1k =
1
2

3∑
i=1
�i−�̃i (14)

where b̃1k is the numerical source term, written for every cell interface k, and

�1−=
−1
2c̃

(
1− |�̃1|

�̃1

)
[gh̃�zx cos �+ gh̃�zy sin �]

�2−=

(
1− |�̃2|

�̃2

)
[−gh̃�zx sin �+ gh̃�zy cos �]

�3−=
−1
2c̃

(
1− |�̃3|

�̃3

)
[gh̃�zx cos �+ gh̃�zy sin �]

�̃1 = [1; ũ− c̃; ṽ ]T; �̃2 = [0; 0; 1]T; �̃3 = [1; ũ+ c̃; ṽ ]T; �̃1 = ũ− c̃; �̃2 = ũ; �̃3 = ũ+ c̃

�zx= − (zR − zL) cos �, �zy= − (zR − zL) sin �. Roe-averaged quantities are given as

h̃=
hL + hR
2

; c̃=

√
g(hL + hR)

2
; ũ=

h1=2R uR + h
1=2
L uL

h1=2R + h1=2L
and ṽ=

h1=2R vR + h
1=2
L vL

h1=2R + h1=2L

The source term can be written as follows:

∫
V
b1 dV =

m∑
k=1
T−1(�k )̃b

1
k L

k (15)
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Hence, Equation (12) can be rewritten as

pn+1 = pn − �t
Ac

m∑
k=1
[f k(qk)− b̃1k]T−1(�k)Lk +�tb2 (16)

where pn+1 shows values at the next time step, �t is the length of the time step and

b2 = [0;Sfx;Sfy]
T; Sfx=

n2vx
√
v2x + v2y
h4=3

; Sfy=
n2vy

√
v2x + v2y
h4=3

Equation (16) is applied to every �nite volume cell.

3.1. Inclusion of rainfall

Rainfall can also be simulated in GSHAW5 by introducing rainfall intensity as a source term
in the continuity equation of the shallow water equations. The solution is achieved using the
splitting technique [12].

@h
@t
+
@(hvx)
@x

+
@(hvy)
@y

= qR (17)

where qR is rainfall intensity (m=s). Splitting the continuity equations as

@h
@t
= qR (18)

and

@h
@t
+
@(hvx)
@x

+
@(hvy)
@y

=0

Equation (18) is an ODE (ordinary di�erential equation) and can be solved by a simple Euler
method given below.

hup = h+�tqR (19)

where hup illustrates the solution to h over a time step �t due to the source term (rainfall)
only.
Since solution of Equation (19) is not the �nal solution for h, the notation hup (for h

updated) instead of hn+1 is used (see Section 4 for more details).
Finally, the overall solution including the rainfall e�ect can be achieved in two steps:

Step 1: Use Equation (19) to update the �rst component of P, h.
Step 2: Use Equation (16) to �nd the next time step values for all three components of P.
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4. COUPLING SURFACE WATER WITH GROUNDWATER

Figure 3 shows the coupling processes used in GSHAW5. There are three cases implemented
in the model:
Case A: The surface is wet and the water depth is prescribed, but the groundwater head is

below the ground level elevation for that cell. In this case, there will be a �ow from surface
to ground due to leakage, computed by Darcy’s law in the z direction:

qi=Kz(h+ Z −H)=Z (20)

where qi is the �ow due to in�ltration, Kz is a hydraulic conductivity in z direction. The
similar expression for the computation of leakage can be found in Wilson and Akande [19],
and Haagsma and Johanns [4].
In�ltration results in increasing groundwater head and decreasing surface water depth.

Hence, qi is introduced as a source term to groundwater and sink term to surface water
continuity equations. Then, the splitting technique is applied to each continuity equation.
Each application then produces an ODE, which is solved by the �rst order Euler method. For
instance, introducing qi as a source term to Equation (1) gives

Sy
@H
@t
=
@
@x

(
KxE

@H
@x

)
+
@
@y

(
KyE

@H
@y

)
+ qi (21)

Application of the splitting technique to Equation (21) yields two equations. The �rst is an
ODE given in Equation (22). The second is Equation (1) given earlier.

Sy
@H
@t
= qi (22)

H

Z

h

H

Case A Case B Case C

Dry no water on
the surface

qi

qsp

Figure 3. The coupling processes: Cases A, B and C.
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By using the �rst order Euler method, the solution to Equation (22) is obtained.

H up =Hn +
�tqi
Sy

(23)

Solution to Equation (1) is already given in Equation (7). Note that the updated groundwater
head values obtained from Equation (23) are used as the present time step groundwater head
values in Equation (7).
Similarly, resulting ODE for the surface water can be solved as

hup = hn −�tqi (24)

Lateral �ow computation for the surface water is also carried out, using the updated water
depth values obtained from Equation (24) as the present time step values in Equation (16).
Case B: The groundwater head is above the ground level and is equal to h+Z . The surface

is wet and there is no in�ltration. In this case, an interaction between groundwater and surface
water is assured by compatibility of the groundwater head and the water level. Again, the
surface water depth and groundwater head is recomputed by

(a) Equation (7), which takes into account the change in storage and gives a solution to
H over a time step, �t.

(b) Introducing another source term, qsp, into the continuity equation of the shallow water
equations.

qsp=
1
Ac

k∑
j=1
fjLj

Then, the splitting technique is applied and the solution is achieved as

hup = hn +
�t
Ac

k∑
j=1
fjLj (25)

qsp is actually equal to the second term on the right-hand side of Equation (7). The
only di�erence is that, here, Sy is omitted as the groundwater head is above the ground
surface.

(c) When the surface water computation is complete and shallow water depth has changed,
the groundwater head, given by the sum of h and Z, must be updated.

Case C: There is no water on the surface and the cells are e�ectively dry. To avoid the
zero-division problem, water depth is the prescribed value 0.00001m. There is no integration
between ground and surface. However, Equations (7) and (16) are still applied in order to
compute the changes due to the horizontal water movements in both ground and surface water.
Finally, the computation in GSHAW5 is carried out as follows:

(1) Flow due to rainfall: Equation (19) is used.
(2) In�ltration: Equations (23) and (24) are used.
(3) Groundwater �ow computation: Equation (7) is used. If Case B occurs then Equa-

tion (25) is used.
(4) Surface water computation: Equation (16) is used. If Case B occurs then the ground-

water head is recalculated.
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The updated value of depth, hup, is obtained from Equations (19), (24) and (25). The updated
value of groundwater head, H up, is obtained from Equations (7) and (23). If those equations
are the �nal equations used according to the steps described above, then hup and H up become
hn+1 and Hn+1, respectively. Otherwise, hup and H up are used as intermediate values, denoted
by hn and Hn, respectively in the following equations. For instance, in Case A, when some rain
occurs, the next time step value (hn+1) for h is obtained from the solution to Equation (16)
not the solution to Equations (19) or (24). In other words, for this particular case, the �nal
solution for h is obtained by taking step 1 �rst, then step 2 (using hup resulted from Equation
(19) as hn in Equation (24)) and �nally step 4 (using hup resulted from Equation (24) as in
Equation (16) for the �nal solution, hn+1).

5. GSHAW5

The program GSHAW5, developed by the �rst author, is written in the object-oriented pro-
gramming language DELPHI 5 and it is user friendly. The surface component of the model
was applied in previous studies [7, 20, 21]. The main features of the model are

(a) Suitability for simulation of shallow surface and saturated subsurface �ow interaction
(b) Suitability for di�erent types of surface �ow including continuous and discontinuous

�ow, steady and unsteady �ow, subcritical and supercritical �ow.
(c) It has the ability to handle di�erent surface boundary conditions. The boundary condi-

tions available in the program include rating curves, time-dependent discharge bound-
aries, given discharge and or water depth and closed or open boundaries.

(d) Suitability for �ow in initially dry areas and drying and wetting �ow conditions.

6. TEST CASES AND RESULTS

GSHAW5 has been tested for a number of hypothetical cases, which are explained below.
In all applications, the speci�c yield values are set to unity in order to easily check the
mass balance at the end of each computation. However, in reality, depending on the type
of material this value changes, i.e. 0.01 for clay to 0.46 for sand (medium size) [10]. The
hydraulic conductivity values are also arti�cially produced but they are within the range of
realistic values [9].
Test 1: A computational domain, 20m long and 1m wide, is divided into 20 cells, each

of which has a 1 × 1m size. The ground elevation (the aquifer thickness) is 2m. Initially,
groundwater head is assumed to have a constant value of 1.5m everywhere (which is 0.5m
below the ground level). The surface water depth is 1m everywhere. Figure 4 shows the initial
conditions described above. The boundaries for both surface and groundwater are assumed to
be closed. Arti�cial hydraulic conductivity values are chosen to be 1× 10−5 m=s. This test is
frictionless and there is no bottom slope.
It can be anticipated that after a su�ciently long simulation, �ow in the domain should

reach the equilibrium condition, i.e. 2.5m groundwater head and 0.5m water depth everywhere
since mass should be preserved.
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Figure 4. Groundwater and surface water integration processes for Test 1: (a) initial; (b) 10 000 s;
(c) 40 000 s; (d) 80 000 s; (e) 100 000 s; and (f) 110 000 s.

Results obtained show that after 110 000 s the equilibrium �ow condition is obtained with
no loss or excess of water (Figure 4).
Test 2: In this test the same computational domain and grid are used as in Test 1. The

computational domain is divided into two regions: left and right of the middle of the domain
(Figure 5(a)). On the left side, the surface water depth is initially equal to 2m, while on
the right side it is 1m, providing a rapidly varying �ow on the surface. On the right side,
the groundwater head is above the ground and is equal to h + Z =4m. On the left side, it
is below the ground level and equal to 1.5m. Boundary conditions are selected as closed for
both surface and groundwater. Under these conditions, it is expected that the mass will be
redistributed. The water depth on the surface will become 1.25m and will remain constant.
The groundwater head is expected to be equal to 3.25m (2+1.25m).
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Figure 5. Groundwater and surface water integration processes for Test 2: (a) initial; (b) 2 s; (c) 4 s;
(d) 60 s; (e) 10 000 s; (f) 20 000 s; (g) 40 000 s; and (h) 60 000 s.
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As seen in Figures 5(b) and (c), there is a rapid change on the surface water after 2 and 4 s,
respectively, due to the large initial di�erence in water depths. The surface water has �uctuated
between the closed boundaries at both ends of the domain for 60 s. However, during that
period there is no movement of the groundwater head as the leakage rate is very low and, in
such a short period, there is almost no groundwater lateral �ow. When the simulation time
reaches 60 s, the water surface almost reaches a steady state condition, whilst there is still no
signi�cant change in the groundwater head. At a time of 10 000 s, there is a considerable drop
on the surface due to in�ltration on the left-hand side of the domain. The groundwater head
increases due to the in�ltration and the lateral �ow caused by the head di�erences, particularly
in the middle of the domain. Similar but more signi�cant changes are seen at times 20 000 s
and 40 000 s. Finally, the expected equilibrium condition is obtained at 60 000 s.
This test is used to demonstrate groundwater �ow, due to the head di�erences and in�l-

tration, and surface �ux due to water depth di�erences. The results show that the expected
�ux occurred and that total mass was preserved. The test also demonstrates that the split-
ting technique and time coupling of surface and groundwater computation have not produced
inaccuracies.
Test 3: A 70m long channel is divided into 70 cells, each of which has a 1 × 1m size.

Between 0 and 40m, the channel has a downward slope of 0.1 from the upstream, followed
by a �at bottom from 40 to 50m and then again a downward slope of 0.2. Both upstream
and downstream boundaries are closed. The groundwater boundaries are also closed. Arti�cial
hydraulic conductivity values are chosen to be 1× 10−5 m=s. Manning’s friction coe�cient is
taken to be 0.02. Initially, surface water elevation is equal to 8m everywhere. The groundwater
head between 0 and 40m is equal to 4m, while between 40 and 70m it is e�ectively equal
to surface water elevation (8m). Initial conditions are shown in Figure 6. It is expected the
surface water will feed the groundwater. The surface water will gradually reduce whereas the
groundwater head values between 0 and 40m will increase. There should not be any loss or
excess of water from the system as all boundaries are closed.
The surface water level and groundwater head values at di�erent times are plotted in

Figure 6. Before reaching the equilibrium condition, the groundwater head between 0 and
40m increases due to the in�ltration and the lateral �ow caused by the head di�erences. The
lateral groundwater movement occurs towards the upstream direction, whereas the in�ltration
occurs in the vertical direction. The surface water level reduces and the surface cells upstream
start drying. Finally, the equilibrium condition occurs at 6.86m from the datum (0m). The
total initial volume of water is 480m3 and the total volume of water at the equilibrium is
also equal to 480m3 Mass is well preserved.
This test is set up in order to demonstrate that the model can handle drying �ow pro-

cesses and also �ow on variable bottom topography. Following Brufau et al. [14] the slope
modi�cation procedure is also introduced in the model in case the ‘stopping’ �ow condition
occurs, which result in mass errors. The stopping �ow condition occurs when the sum of
water depth and the ground elevation in the centre of the cell under consideration exceeds
the sum of water depth and ground elevation in the centre of the neighbouring cell (other
side of the cell interface). If this case happens, then the slope at that interface is modi�ed
and the quantity (zR − zL) is replaced by −(hR − hL). However, it should be noted that this
modi�cation works quite well for steady �ow cases but for unsteady �ow cases the velocities
at the cell interface are reduced to zero, which can produce mass errors in unsteady �ow
conditions [14].
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Figure 6. Groundwater and surface water integration processes for Test 3: (a) initial; (b) 100 000 s;
(c) 200 000 s; (d) 400 000 s; (e) 1 000 000 s; (f) 1 800 000 s; (g) 300 0000 s; and (h) 6 800 000 s.

Test 4: This test is a 2-D application of the model. The domain is 100m long and 40m
wide. It is divided into 50 × 20 cells, each 2 × 2m in size. At a point 10m, a waterproof
barrier is placed in a vertical direction so the surface water boundary at that point is closed
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and groundwater movement is allowed only under the barrier. Manning’s friction coe�cient
is taken to be 0.02 and the hydraulic conductivity value is set to be 2× 10−5 m=s. The com-
putational domain, with initial �ow conditions, is illustrated in Figure 7. From the upstream
boundary to 10m into the domain, the ground level is 10m and the bottom is �at. In this part,
there is no surface water but the groundwater head is equal to 3m. Between 10 and 100m a
bottom slope of 0.001 in both x and y directions is applied. The groundwater head is constant
between 10 and 100m and is equal to 1.87m. Between 10 and 90m the water level is equal
to 2.1m and between 90 and 100m a water depth of 4m is applied. Figures 8(a)–(c) show
the cross-sectional views of the set-up. It can be seen that this set-up produces varying ground
and water levels in both x and y directions. All outside boundaries both for the surface water
and groundwater, are closed so that the mass balance can be checked. There should be no
excess or loss of mass.
Under these �ow conditions, the following �ow motion is expected; the surface water

between 90 and 100m on the right-hand side of the domain propagates fast to the left and
when it reaches the barrier it is re�ected back. This produces a �uctuating water surface and
the surface �ow motion continues until it reaches the equilibrium stage. During this movement
and also after the equilibrium on the surface water, there will be a certain amount of surface
water which gradually joins the groundwater by in�ltration until the groundwater head reaches
the ground level. In terms of groundwater motion, a certain amount of groundwater from the
left side of the barrier will gradually pass under the barrier and the groundwater head on

10m
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2m

Dry Surface 

Groundwater

10m

Datum (0m) 

Bottom

Barrier

1.87m

1.91m

1.87m
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x

y

∆

Figure 7. Computational domain and initial groundwater �ow condition for Test 4.
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Figure 8. Cross-sectional views of initial �ow condition and computational domain
for Test 4: (a) (x; y)= (0; 0) − (100m; 0); (b) (x; y)= (10m; 0) − (10m; 40m); and

(c) (x; y)= (100m; 0)− (100m; 40m).

the right-hand side of the barrier raises. The rate of increase on the groundwater head on
the right-hand side of the barrier depends on the vertical in�ltration rate and the horizontal
groundwater �ow rate from the right-hand side of the barrier. This process will continue until
the overall equilibrium condition (static �ow in the domain) is achieved.
The results are illustrated in Figures 9–11. Figures 9(a)–(c) show the water depth pro�les

at 10, 200 and 2000 s, respectively. The initially unbalanced water on the surface moves to the
barrier �rst and then turns back and propagates towards downstream. This movement almost
stops at 2000 s as shown in Figure 9(c). During the surface water motion, the in�ltration
from surface to ground also takes place but the in�ltration rate is very low. The horizon-
tal groundwater �uxes are also low compared to those of the surface water. Therefore, the
groundwater head values change gradually. When the groundwater reaches the ground level,
the groundwater head (the pressure head) becomes h+Z as explained in Section 4, see Case
B. As expected, the occurrence of Case B starts from the lowest ground level and moves
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(a)

(b)

(c)

Figure 9. Surface water depth pro�les after the barrier for Test 4 at: (a) 10 s; (b) 200 s; and (c) 2000 s.

to highest point, as shown in Figures 10(a)–(c). The groundwater head on the left side of
the barrier decreases (starts at 3m and reaches ∼= 2:51m) and overall equilibrium condition
occurs almost at 10:8 × 106 s as demonstrated in Figure 11. Initially, total volume of water
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(a)

(b)

(c)

Figure 10. Groundwater head (h+ z) pro�les for Test 4 at: (a) 200 s; (b) 2000 s; and (c) 10 000 s.
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Figure 11. Groundwater head (h+ z) pro�le for Test 4 at 10:8× 106 s.

inside the domain is 10 044m3 and at 10:8× 106 s it is equal to 10044:2m3. Hence, the mass
is again well preserved and the mass error is 0.002%. When the volume of water is divided
by the number of cells multiplied by the cell area, it gives the water level inside the domain.
At the equilibrium, the computed water level should be 2.511m, which is very similar to that
produced by the model, as illustrated in Figure 11.

7. CONCLUSIONS AND FURTHER WORKS

From this study, the following conclusions can be drawn.

(1) A �nite volume solution for the integrated surface–saturated groundwater �ow problems
is provided. Surface water solution is tightly coupled with the groundwater solution so
in each time step the type of interaction is checked and the suitable solution is used.
The surface water solution is suitable for many �ow conditions, including discontinuous
�ows and wetting and drying �ow conditions.

(2) In all the tests provided, the hydraulic conductivity values were taken to be the same in
all directions and all cell interfaces. However, the model is �exible and di�erent values
for di�erent cell interfaces can be used. Moreover, although not shown in any example,
the model can be used for the simulation of �ow including rainfall as explained in
Section 3.1.

(3) The splitting technique generally produces errors when it is used for the treatment of the
bottom slope for the shallow water model applications [7]. Here in all applications, the
errors are found to be almost none. This is probably due to the fact that the groundwater
�uxes as well as the in�ltration rate were very small as the time steps used were also
small so the technique worked well. The presented method employs explicit solutions,
which require small time steps to ensure stability, i.e. in the presented tests, time steps
ranged from 0.1 to 0.5 s. In reality, groundwater �uxes are generally low and the use
of small time steps ensures that the method can be applied to a wide range of surface
water–groundwater interaction problems (i.e. river–aquifer interactions) and wetland
management.
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It is planned to continue development of this model by the introduction of a solution to
multi-layers groundwater �ow processes, and variable time steps between the ground and the
surface �ow components.
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